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Abstract Numerical simulations have been performed for three-dimensional natural convection
of water near its maximum-density (cold water) inside rectangular enclosures with differential
heating at the vertical (left and right) walls. The horizontal (top and bottom) walls and the lateral
(front and rear) walls are taken as insulated. Computations are performed for the buoyancy-
driven convection of cold water with density inversion parameter 0y, = 0.5 in the enclosures with
aspect ratio (height/width) Ay = 8 and depth ratios (depth/width) A, = 0.5, 1, and 2. The
nfluence of the depth ratio on the onset of oscillatory convection in a cold-water-filled enclosure is
investigated. The presence of the lateral walls tends to suppress the onset of unsteadiness in the
convective flow. The main features of the oscillatory convection flow and temperature fields as
well as the instability mechanism in the three-dimensional enclosure were similar to those found in
the two-dimensional model. However, there exists a strong three-dimensionality in the spatial
distribution of the fluctuation amplitude. With the decrease of the depth ratio, the damping effect
of the lateral walls becomes increasingly pronounced, leading to a reduced heat transfer rate.

Nomenclature
A, = aspect ratio, HW Ray = Rayleigh number based on
A, = depth ratio, /W ‘ height, g - 7sp(AT) H?3 / (ve)
b = exponent in the density equation = coefficient in density equation
D = depth _
¢ = time
il = frequency _
e . 2 T = temperature
f = dimensionless frequency, f* W/« AT _ Jiff b
Fo = Fourier number, ot/ W? = temperature difference between
g = gravitational acceleration hot aTld cold wall, (7}, — T¢)
H = height U, = velocity components
Pr = Prandtl number, v/« \Y = dimensionless velocity vector
Ra = Rayleigh number bbased on w = width
width, g - 7sp(AT)" W3/ (va) x*, y", 2" = Cartesian coordinates
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x, v,z = dimensionless coordinates, @ = dimensionless pseudovorticity
<IW yHIW, W vector

Superscripts
- = time-averaged value
Groek symbols ! = fluctuating component

e = thermal diffusivity
0 = dimensionless temperature, Subscripts
(T - T)AT ¢ = cold wall
O = density inversion parameter, cr = critical state
(T,, - THAT h = hot wall
v = kinematic viscosity m = maximum density, or
P = density periodically mean value
Introduction

For the past decades, there have been a number of studies of the natural
convection of water near its density maximum (cold water) inside a vertical
rectangular enclosure with differentially heated sidewalls. Cold water is known
to feature an anomalous density-temperature relationship, the so-called density
inversion phenomenon, having its maximum density at about 4°C at the sea-
level atmospheric pressure. The representative works for steady-state (Seki et
al., 1978; Lin and Nansteel, 1987; Tong and Koster, 1993) and transient (Vasseur
and Robillard, 1980; Braga and Viskanta, 1992) natural convection in vertical
rectangular enclosures filled with cold water revealed that the buoyancy-driven
flow structure and heat transfer are strongly affected by the density inversion
phenomenon, giving rise to some interesting phenomena such as multicellular
flows and heat transfer extremes.

Recently, the interest of study has turned to the transition into oscillatory
convection that occurs when the Rayleigh number is increased to sufficiently
large values. Nishimura et al. (1995) undertook a numerical investigation
concerning the occurrence of oscillatory natural convection of cold water in a
vertical rectangular enclosure of aspect ratio 1.25 at the Rayleigh numbers of
10° ~ 10% Their simulations failed to predict unstable buoyant flow and
temperature fields in the enclosure. Nishimura and his co-workers (1997)
further examined experimentally and numerically the effect of initial
temperature on the inception of oscillatory natural convection of cold water in a
vertical enclosure of aspect ratio 1.25. The vertical walls of the enclosure were
maintained isothermal, respectively, at 8°C and 0°C. With the initial
temperature at 4°C, an unstable buoyant flow in the enclosure was observed for
Ray > 9 x 105, featuring an oscillatory sinking jet-like flow structure. At an
initial temperature other than 4°C, however, no oscillatory flow was detected
experimentally. In the corresponding finite-element simulations, only partial
agreement was found in comparison with the experimental results. Recently,
the present authors presented a numerical study (Ho and Tu, 1999) concerning
the inception of oscillatory natural convection of cold water in a two-
dimensional vertical enclosure of high aspect ratio (4, = 8). With incremental
increase in the Rayleigh number, transition into self-sustained oscillatory
convection regime in the cold-water-filled enclosure through a Hopf bifurcation
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Figure 1.

Schematic diagram of
the physical
configuration and
coordinate systems

was predicted. An oscillatory multicellular structure prevails within counter-
rotating bicellular flow regions, featuring a traveling wave motion of the
maximum density contour of water. The nature of the transitional instability
into oscillatory convection in the tall enclosure was demonstrated to be
buoyancy-driven. The critical Rayleigh numbers for the transition into
oscillatory convection were found to be 4 x 10° < Ra,, < 5 x 10° and 7 x 10*
< Ra,, < 8 x 10* for the density inversion parameter 6,, = 0.4 and 0.5,
respectively. In a similar geometry but under the initial cold-start conditions,
occurrence of the oscillatory convection was visualized experimentally in a
more recent study of transient natural convection of cold water (Ho and Tu,
2001). However, there exist substantial discrepancies between the two- and
three-dimensional numerical simulations corresponding to the experiments,
reflecting significant three-dimensional effects on the transition process.

The present study aims, accordingly, to assess numerically the three-
dimensional effects on transition to oscillatory convection of cold water in the
physical configuration considered in the previous study (Ho and Tu, 1999).

Numerical formulation

Figure 1 displays a schematic of the simulated configuration of a rectangular
enclosure of dimensions W x H x D filled with water near its density
maximum. The left-hand vertical wall is isothermally heated at a constant
temperature 73, while the right-hand vertical wall remains isothermal at a
constant temperature 7, (< 7}). The remaining sidewalls of the enclosure are
taken as adiabatic.

Goverming equations

The governing equations for the three-dimensional transient laminar natural
convection in the cold-water-filled enclosure are formulated adopting the
pseudovorticity-velocity formulation (Ho and Lin, 1997). Physical properties of
water, except for the density in the buoyancy force terms, are assumed
constant. The non-dimensional governing equations in terms of the
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pseudovorticity vector w, velocity vector V and temperature 6 can be expressed
as follows:

ov

%+Vx(w+PerV):0 (1)

V2% =V x [V x (V x V)] +PrRaV x (|0 — 0,,]"&,) (2)
00 )

oyt V V0=V (3)

Here, the following density-temperature correlation (Gebhart and Mollendorf,
1974) was used for evaluating the density of the cold water:

p=pm(L—rsp|T — Ty|") (4)

where p,, = 999.9720kg/m?®, rsp = 9.297173 x 107°(°C)™®, b = 1.894816, and
T,,=4.029325°C.
The boundary conditions at the enclosure walls are:

xr=0;, V=0,0=1 (5a)
xr=1 V=0,0=0 (5b)
y=0and A4y; V=0,00/0y=0 (5¢)
z=0andA4,;; V=0,00/02=0 (5d)

The boundary conditions for the pseudovorticity on the sidewalls of the
enclosure can be evaluated explicitly from the wall vorticity (Ho and Lin, 1997).
As the initial condition, we take a solution obtained for a lower Rayleigh
number.

The foregoing formulation clearly reveals that the relevant dimensionless
parameters for the three-dimensional natural convection in the cold-water-filled
enclosure include: the Rayleigh number, Ra; the Prandtl number, Pr; the
density inversion parameter, 6,,; the aspect ratio (height/width), A,; and the
depth ratio (depth/width), A,. The density inversion parameter 6,,, as shown in
the earlier studies (Lin and Nansteel, 1987; Ho and Tu, 1999), essentially
controls the orientation of the maximum density temperature 7, with respect
to the vertical wall temperatures 7 and 7, and has a fundamental effect on the
flow structure and heat transfer in the enclosure.

Method of solution
The differential equations were discretized spatially using a second-order
central difference approximation for the diffusion terms and the QUICK scheme
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Table I.

Comparison of results
for natural convection
in an air-filled cubic
enclosure

(Leonard, 1983) for the advection terms. A non-uniform grid in the x-direction
was constructed for effectively capturing the steep gradients along the
thermally active walls of the enclosure, while uniform grids were used in both
y- and z-directions. The time-dependent velocity and temperature Equations (1)
and (3) were integrated in time using an explicit approximation with second-
order accuracy.

Based on the results of the previously obtained solution of the approximate
value of the Rayleigh number as the initial condition, the simulation starts with
solving equations (1) and (3) for the velocity and temperature fields,
respectively. A time step of 5 x 107 was found sufficiently small for the
present simulations. At each time step, the discretized pseudovorticity equation
(2) is calculated iteratively by a successive relaxation method until a relative
convergence criterion of less than 5 x 107 is met. The transient solution is
considered asymptotically approaching a steady state condition, if the relative
convergence criteria of 107 and 5 x 107 are, respectively, satisfied for the
solutions of temperature and velocity.

Throughout the present simulations, double-precision arithmetic was
incorporated to achieve high solution accuracy. Based on a grid-size variation
study, a grid of 37 x 201 x 31 (x x ¥ x z) was found to be sufficiently fine for
the simulations. CPU times required for a calculation on an IBM SP2
workstation range from 290 to 400 hours, depending on the Rayleigh number
and the occurrence of the oscillatory convection.

The present three-dimensional code was validated obtaining excellent
agreement with the reported solutions for steady state natural convection in an
air-filled cubic enclosure (Le Peutrec and Lauriat, 1990; Fusegi et al., 1991), as
demonstrated by the comparison of the surface-averaged Nusselt number at
various Rayleigh numbers shown in Table I.

Results and discussion

In the present work, the aspect ratio of the enclosure, A,, was fixed at eight.
Three values of the depth ratio, A, = 0.5, 1, and 2, were considered to unveil
possible effects of the lateral (front and rear) vertical walls on transient
convection of cold water in the enclosure. The simulations were undertaken by
varying Rayleigh number under the condition of ,, = 0.5.

Nu
Ra Le Peutrec and Lauriat (1990)  Fusegi et al. (1991) Present simulation
10° - 1.085 1.057
10* - 2.100 2.074
10° 4.348 4.361 4.367
100 8.651 8.770 8.755




Steady state convection

In the enclosure of A, = 2, steady state convection was found to reach
asymptotically for Ra = 10* ~9 x 10* . The three-dimensionality of the
buoyancy-driven flow structure and temperature field can be qualitatively
inferred from the disparity among the plots of velocity vector and isotherm at
three x-y planes shown in Figure 2 for Rz = 9 x 10%. The velocity vector plots
were scaled with the maximum velocity in the cross-section of interest. Under the
influence of the density inversion, a bicellular flow structure with a downward
stream along the maximum density contour of water is clearly formed at each x-y
cross-section. The symmetry of the cross-sectional velocity and temperature fields
with respect to the mid-plane z = 1 can be readily detected from Figure 2.

Transition to oscillatory convection

As the Rayleigh number is further increased to 10°, a self-sustained
periodically oscillatory convection regime prevails in the enclosure of A, = 2
with a dimensionless frequency of f = 47.4, which is very close to the value of
47.2 predicted in the corresponding two-dimensional simulation (i.e. A, = oo)
(Ho and Tu, 1999). Figures 3 and 4 display, respectively, a time sequence of the
cross-sectional velocity field and temperature distribution in two x-y planes
over one period of oscillation. In the mid-plane z = 1, the cyclic sequence of
unsteady multicellular flow development (Figure 3(i1)) synchronized with the
upward-traveling wavy temperature variation (Figure 4(ii)) is very similar to
that found in the two-dimensional model. On approaching the rear lateral wall
at z = 0.133 (Figures 3(1) and 4(i)), the cyclic variation of the cross-sectional
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Figure 2.

Steady state cross-
sectional velocity
vectors (right) and
isotherms (left) in
selected x-y planes with
A, =2at Ra =9 x 10*
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Figure 3.

Cyclic variation of cross-
sectional (x-y plane)
velocity vectors at
(1)z=0133and (i)z=1
with A, = 2 and

Ra = 10°
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velocity and temperature fields can be seen to be similar to those in the
midplane z = 1 but with greatly subdued unsteadiness, reflecting the effect of
viscous dissipation by the presence of the lateral walls in the three-dimensional
enclosure. The maximum density jet flow coming off the midpoint of the
ceiling, as shown in Figure 3(1), is substantially weaker with the minute vortex-
splitting phenomenon occurring only in the upper-half central core region of the
enclosure. The foregoing suggests that the instability mechanism in the three-
dimensional enclosure is similar to that observed in the two-dimensional model.
The two-dimensional nature of the oscillatory flow can be further demonstrated
by the cyclic variation of the cross-sectional velocity structures at three x-z
planes (y = 2, 4, and 6) shown in Figure 5 under the same conditions as Figures
3 and 4. The cross-sectional flow structures at various horizontal planes
oscillate mainly along the x direction, displaying more or less symmetry with
respect to the x-y mid-plane z = 1.

Figure 6 presents the contour lines of equal amplitude of the temperature
fluctuations in the x-y planes of z = 0.133 and 1 inside the enclosure of A, = 2 for
Ra = 10°. The amplitude of temperature fluctuation was evaluated in every
grid point by subtracting the local time-averaged value from the local
instantaneous value. The solid and dashed contours denote, respectively, the
local instantaneous temperature higher and lower than the local time-averaged
temperature. Resembling the cyclic variation that was predicted in the two-
dimensional model (Ho and Tu, 1999), the temperature fluctuation arises at the
lower-quarter region, whereupon the maximum density contour begins its
meandering; then intensifies on its course of upward drifting along the vertical
central core; and finally diminishes at the ceiling of the enclosure. Comparison
of the fluctuation structures in two x-y planes of z = 1 and 0.133, shown in
Figure 6, indicates that the temperature fluctuation amplitude has a distinct
structure as a function of the depth z. In the plane near the rear lateral wall z =
0.133, the amplitude of temperature fluctuation appears to be substantially
suppressed due to the presence of the lateral wall in the three-dimensional
enclosure. Moreover, the three-dimensional oscillatory convection exhibits a
symmetric temperature fluctuation structure with respect to x-y mid-plane
(z = 1) of the enclosure, as can be inferred from the cyclic variations of the
temperature fluctuation in different x-z planes displayed in Figure 7.

Further, the nature of the instability mechanisms for the present case is
examined by evaluating the production of the fluctuating kinetic energy of the
oscillatory convection like that performed in the previous two-dimensional
simulation (Ho and Tu, 1999). The resultant distributions of local production of
time-averaged fluctuating kinetic energy due to flow shear and buoyancy in
two x-y planes of the enclosure are, respectively, presented in Figure 8. The
local production of fluctuating kinetic energy due to the shear of the mean
flow and the buoyanc;r forces are defined as —wu; Ou;/Ox/; and
Ra Pr [2(0 — 6,,)0' + (0')7]0j2, respectively. It can be seen that in the x-y mid-
plane (z = 1) the buoyancy is the dominant source for the production of
the fluctuating kinetic energy with a spatial distribution occupying the upper
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two-thirds portion of the enclosure. Moving toward the lateral wall, the
contribution of the buoyancy or the flow shear to the production of the
fluctuating kinetic energy is markedly reduced, as exemplified by Figure 8(i)
for the plane z = 0.133. Further, the buoyancy is found to be the sole source for
the total production of the fluctuating kinetic energy in the three-dimensional
enclosure, similar to that found in the two-dimensional model. The instability
mechanism for the transition into oscillatory convection inside the three-
dimensional cold-water-filled enclosure is therefore thermal in nature.
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Supercritical simulations for the enclosure of A, = 2 were further carried out by
progressive increase of the Rayleigh number up to 1.2 x 10°. The solutions to
these cases all remain periodic at increasingly higher frequencies. The critical
Rayleigh number for the transition into oscillatory convection for the three-
dimensional enclosure of A, = 2 is thus estimated to be between 9 x 10* and
10°, which is about 12 per cent higher than that found in the two-dimensional
enclosure (Ho and Tu, 1999). This clearly reflects that the presence of the lateral
walls exerts a damping effect on the inception of the oscillatory convection in

the three-dimensional enclosure.
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Figure 8.
Cross-sectional
distributions of local
production of time-
integrated fluctuating
kinetic energy due to (a)
flow shear and (b)
buoyancy in two x-y
planes with A, = 2 at
Ra = 10°. Negative
iso-values are denoted
by dotted lines
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To further unveil the influence of the lateral wall, simulations were undertaken
for the enclosure of the depth ratio A, = 1 and 0.5 by progressively increasing
the Rayleigh number up to 4 x 10° and 5 x 10°, respectively. All the
simulations were found reaching steady state flow field and temperature
distribution, a further indication of the damping effect due to the presence of
the lateral walls. This finding is consistent with that found for the air-filled
enclosure (Janssen et al., 1993). Figure 9 exemplifies the steady state cross-
sectional distribution of isotherms and velocity vectors in the enclosure of A, =
1 at Ra = 4 x 10°. In the planes near the lateral walls (z = 0.1 and 0.9), the
buoyancy-driven flow is clearly weaker than that in the x-y mid-plane (z = 0.5)
of the enclosure.

Finally, results of the surface-averaged heat flux for the steady state or
periodically oscillatory convection in the cold-water-filled enclosure are
presented by plotting the time- and surface-averaged Nusselt number along the
hot wall, Nuy, ,,, versus the Rayleigh number, as shown in Figure 10. Also
included in Figure 10 are the data obtained from the two-dimensional
simulations, which can be viewed as A, = cc. It is evident from the plot that the
heat transfer rate has a strong bearing with the depth ratio, A,, of the enclosure.
At a fixed Rayleigh number, the decrease of the depth ratio leads to a
significant decrease of the heat transfer rate across the enclosure, signifying
further the damping effect of the lateral walls. Further examination of Figure
10 reveals that, in the oscillatory convection regime, the heat transfer rate
exhibits a sharper increase with the Rayleigh number.

(b) z=0.5
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Figure 9.

Steady state cross-
sectional isotherms
(right) and velocity
vectors (left) in selected
x-y planes with A, = 1 at
Ra =4 x 10°
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Figure 10.

Variation of time- and
surface-averaged heat
transfer rate across the
enclosure with the
Rayleigh number
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Concluding remarks

In the present study, three-dimensional numerical simulation has been
performed to assess the three-dimensional effects on inception of oscillatory
natural convection in a vertical high-aspect-ratio (4, = 8) enclosure filled with
cold water. Comparisons between results were made for 6,, = 0.5,10* < Ra
<5x10°A,=025,1,2, and oo (two-dimensional model).

Overall, the three-dimensional predictions in the main features of the
oscillatory convection flow and temperature fields as well as the instability
mechanism were similar to those found in the two-dimensional model.
However, there exists a strong three-dimensionality of the oscillatory flow and
temperature fields in the enclosure. The oscillatory convection has a significant
effect on heat transfer rate across the enclosure. The three-dimensional
convection in the cold-water enclosure can be strongly affected by the depth
ratio A, of the enclosure due to the presence of the lateral walls. The viscous
damping associated with the presence of the lateral walls tends to suppress the
unsteadiness of three-dimensional convection and hence the heat transfer rate
inside the enclosure.
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